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Abstract
This paper estimates the non-monotonic effects of air pollution on criminal activity in a
developing country setting and provides empirical evidence on the potential behavioral
responses mediating this relationship. To do so, I combine daily administrative data
on crime, air pollution, and sentiment polarity from millions of social media posts in
Mexico City between January 2017 and March 2020. The identification strategy relies
on highly dimensional fixed-effect models, non-parametric estimations of dose-response
functions, and an instrumental variable approach that employs wind speed and wind
direction as instruments for air pollution. My results suggest a causal and inverted
U-shape relationship between air pollution and crime. Specifically, there is an inflection
point after which marginal increases in air pollution negatively affect criminal activity.
Exploring the mechanisms behind this relationship, I find that air pollution has the
power to shape people’s emotional states and mobility patterns. These results provide
important insights for developing countries where pollution levels are dangerously
high, and crime is still one of the most pressing issues. In particular, under certain
circumstances, environmental regulation tailored to reduce air pollution must consider
the presence of behavioral responses and these non-linear interactions with criminal
activity in their design.
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1 Introduction

Air quality disparities among industrialized and developing countries have widened during

the last decades. Rapid urbanization in low- to middle-income countries, coupled with

explosive population growth, has created dense urban centers with levels of air pollution often

exceeding five to ten times the limits recommended by the World Health Organization (WHO,

2021). While poor air quality is a severe threat in all the world’s regions, it disproportionality

affects urban areas of the developing world where mitigation opportunities are scarce. Yet,

most research has taken place in richer countries where pollution levels are not usually high,

and data and scientific knowledge are readily available.

Reducing the evidence gaps in air pollution across levels of development is imperative.

Recent studies suggest poor air quality poses a more severe risk than previously thought.

Ambient pollution could induce not only health-related problems but also alter a broader set

of socioeconomic outcomes, often less visible such as labor productivity (T. Chang et al.,

2016; Lichter et al., 2017; T. Y. Chang et al., 2019) and cognitive dysfunctions (Sanders, 2012;

Ebenstein et al., 2016), and more difficult to measure, such as changes in human behavior

(Burke et al., 2021; Aguilar-Gomez et al., 2022).

In this paper, I estimate the effects of air pollution on criminal activity in a developing

country setting and provide evidence suggesting that behavioral responses mediate this

relationship. In particular, I test for the presence of nonlinearities between air pollution and

crime in Mexico City, examine how it compares to previous results in developed countries,

and study the behavioral responses to air pollution as a potential explanation of these

phenomena.

Mexico City offers a highly relevant setting for this analysis for two reasons. First,

unlike similar urban areas elsewhere in the developing world, the local government maintains

high-quality monitoring stations and highly disaggregated administrative crime data. Second,

the city exhibits a high variance in air pollution, encompassing pollution levels common

for both developed and developing countries. This variation allows me to estimate the

marginal effect of air pollution on crime and compare this effect with the effects observed in

industrialized countries.
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To estimate the effect of air pollution on crime, I collect and combine daily adminis-

trative data on geo-localized crime records, air quality, and weather controls between January

2017 and March 2020. My final database includes 2,207,933 observations of daily crimes

across 1728 neighborhoods in Mexico City. To test for nonlinearities in this relationship,

I estimate Ordinary Least Squares models (OLS) using neighborhood and calendar fixed

effects as well as a full set of weather controls. To account for any additional time-varying

confounders, I implement an Instrumental Variable approach (IV) using wind speed and

wind direction as sources of exogenous variation in local air pollution.

The OLS results suggest that, at the neighborhood-day level, an additional 10 units

in the Air Quality Index (AQI) increases crime by 1.11%. However, since the dose-response

between criminal activity and air pollution follows an inverted U-shape, once the air quality

index surpasses ∼ 120 units, an additional 10 unit increase in the AQI decreases crime by

0.05%. The IV estimates report qualitatively similar results and show that after the turning

point of 120 units is reached, increasing 10 units in the AQI decreases crime by 0.04%.

I provide evidence that the inverted U-shape between crime and air pollution is

explained by two interacting yet opposing forces: (1) changes in emotional state and (2)

avoidance behaviors implemented to reduce air pollution exposure when high levels are

reached.

I use two approaches to examine how changes in individuals’ emotional states could

explain the pollution-crime relationship. First, I analyze whether some crimes are more

responsive to air pollution than others. In line with previous results in the literature

(Burkhardt et al., 2019; Herrnstadt et al., 2021), I estimate that air pollution increases

violent crimes (e.g., assault, robbery, homicide, etc.) but not non-violent crimes (e.g., theft,

falsification, white collar crime). These results indicate that poor air quality induces crimes

that are more likely impulsive and mostly interpersonal. Second, I test whether behavioral

responses, such as aggression and lack of self-control, may play a role in the pollution-

crime relationship by analyzing how air pollution affects expressed psychological distress

and emotional states. To do so, I employ Sentiment Analysis to construct indicators of

expressed sentiment —as a proxy of emotional state— in 4,127,254 geo-localized Twitter

posts. Sentiment Analysis, or opinion mining, is a Natural Language Processing tool that
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is used to interpret and classify the emotional tone from a body of text into a vector of

sentiment scores (positive, negative, or neutral). My results show a positive correlation

between negative sentiment and air pollution, suggesting that expressed sentiment is more

negative on days with poor air quality.

To evaluate the presence of adaptation responses, I show there is a relationship

between air pollution and mobility patterns. I use the number of "tweets from home" and

daily metro ridership as outcome variables. First, I construct a "tweeting from home" variable

as a proxy for being indoors. I find a positive correlation between pollution concentrations

and being at home. Second, from administrative data on metro ridership—as a proxy for

being outdoors—I find a negative correlation between air pollution and the number of metro

journeys. These results suggest that adaptation responses play a role, especially when high

pollution levels are reached, and therefore may also explain the non-monotonic relation

between air pollution and crime.

Since adaptation responses might be correlated with or determined by income, I

explore further whether the responses to air pollution differ across socioeconomic groups.

Using a marginalization index, I show that it is precisely in wealthier neighborhoods where

there is an inflection point, after which increases in air pollution lead to a decrease in violent

crime. This result supports the hypothesis that more affluent areas are the ones that can

invest in defensive behaviors, such as staying indoors or avoid specific areas, when levels of

air pollution are too high.

Taken together, these findings provide a systematic empirical examination of air

pollution, crime, and adaptation responses in a developing country setting. In doing so, this

paper relates and contributes to the literature on the effects of air pollution on non-health-

related outcomes and the behavioral responses that mediate those effects.

This paper speaks to the emerging literature on the effects of air pollution on crime,

mainly focused on industrialized countries. Burkhardt et al. (2019) find that a 10% increase

in PM2.5 is associated with a 0.14% rise in violent crimes using data from the continental

US. Bondy et al. (2020) estimate that an additional 10 units in the Air Quality Index (AQI)

increase crime by 1.2% in London, UK. Herrnstadt et al. (2021) find that in the City of

Chicago, in neighborhoods located downwind of a major interstate, violent crime increases by
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1.9%. Finally, Chen & Li (2020) use variations in the NOx Budget Trading Program in the

US to show that reductions in air pollution lead to a decrease of 3.7% in violent crimes and

2.9% in property crimes. My paper contributes to this literature by providing evidence of

this relationship in a developing country setting (Ayesh, 2021; Batkeyev & DeRemer, 2022),

where it is common to find high levels of air pollution year-round. In particular, this paper

takes advantage of the high variance in air pollution in Mexico City to estimate the marginal

effects of air pollution at typical ranges for developing countries and then compare this to

the marginal effects at ranges common for developed countries. Furthermore, this paper

explores the presence of non-linearities in the relationship between air pollution and crime,

having important implications for designing environmental and crime prevention policies.

In studying the mechanisms underlying the effects of air pollution on crime, this paper

also adds to the literature on behavioral responses to air pollution. Mounting experimental

evidence suggests that exposure to air pollution, even in small doses, could alter human

behavior by affecting brain health. Research has shown that air pollution components

could reach the brain, causing severe inflammation (Calderón-Garcidueñas et al., 2016;

de Prado Bert et al., 2018; Martikainen et al., 2021) and damaging the central nervous

system (Block & Calderón-Garcidueñas, 2009; Thomson, 2019; Calderón-Garcidueñas et

al., 2021). Pollution-induced damage to the brain is associated with altered emotional

states such as aggressiveness, anxiety, depression (Dantzer et al., 2008; Lu et al., 2018),

dementia, and suicide (Calderón-Garcidueñas et al., 2018; Gładka et al., 2018; Niedzwiecki

et al., 2020; Liu et al., 2021). Poor air quality is also associated with changes in stress

hormones (Li et al., 2017; Thomson, 2019), which may exacerbate psychological distress and

affect individuals’ intertemporal preferences (Koppel et al., 2017). In the field of economics,

recent empirical evidence also points out that environmental stressors have the power to

shape human outcomes affecting expressed psychological distress, defensive purchases, and

mobility (Baylis, 2020; Ito & Zhang, 2020; Burke et al., 2021; Aguilar-Gomez et al., 2022).

In that regard, my paper contributes to the literature on behavioral responses by showing

how the pollution-induced deterioration of emotional states might also affect interpersonal

interactions such as violent crime.

This paper also contributes to the literature examining how air pollution alters the
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emotional well-being of urban populations using social media. In addition to expanding

the study of how environmental stressors affects expressed sentiment to include a Spanish-

speaking population—whereas previous research has only examined English and Chinese—my

paper also uses state-of-the-art deep neural network-based methods to classify expressed

sentiments online instead of the widely popular lexicon-based methods. These modern

language models can exploit prior knowledge and automatically learn the meaning and order

of words, which provides higher performance and accuracy in classification methods (Catelli

et al., 2022), such as the ability to analyze sentiment in the Spanish language.

The remainder of this paper is organized as follows. Sections 2 and 3 present the

institutional background and the conceptual framework that guides the paper. Section 4

describes the construction of data as well as the procedures used for data cleaning. Section 6

presents the empirical strategy and identification assumptions. Section 7 presents the main

results and discusses the mechanisms. And finally, Section 9 concludes.

2 Institutional Background

Mexico City, the second largest city in the western hemisphere, offers a valuable laboratory

for studying air pollution and crime. Its metropolitan area is home to about 20 million

people, providing a large sample. It also has a reliable network of 34 air pollution monitoring

stations across the city (see Appendix Figure A.1) that international organizations frequently

audit. And, unlike other cities used to examine the pollution-crime relationship, Mexico City

has pollution levels more typical of many mega-cities in the developing world. Furthermore,

it has highly disaggregated administrative data on geolocated crimes, which is uncommon

for similar cities in the region.

Air Pollution Air pollution has been a significant issue for decades, and for several

years, Mexico City has been ranked as one of Latin America’s most polluted metropolis.

Although there have been substantial improvements in air quality during the last 20 years,

rapid industrialization, unplanned urban development, and explosive population growth

make spikes in airborne pollution common in the city. Geographic factors exacerbate severe

air-quality problems. For example, the city’s high altitude prevents carbon-based fuels from
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properly combusting; mountains and volcanos surround the inland basin on three sides which

traps pollution in the valley; intense solar radiation, especially during the warm season,

accelerates the formation of air pollutants.

Mexico City’s government monitors six criteria pollutants, but four major ones

dominate the skies: Fine Particulate Matter (PM25), coarse Particulate Matter (PM10),

Ozone (O3), and Nitrogen Dioxide (NO2). During my analysis period, PM25 exceeded the

World Health Organization’s (WHO) recommended threshold 87% of the days, NO2 97% of

days, and Ozone and PM10 more than 50% of days.

Given the diverse set of pollutants and their high concentrations, the city disseminates

pollution information through the Air Quality Index (AQI), a composite measure of six

criteria airborne pollutants. According to this index, a value lower than 50 is considered

safe for human health, while values above 100 are regarded as risky. In Mexico City, the

AQI usually reaches dangerously high levels (see Figure A.3), with a mean value of 90.5. In

contrast, the AQI in other cities studied before, like London in the UK, rarely surpasses 40.

Meteorology Mexico City has a subtropical highland climate with low humidity and warm

temperatures during the day, cool nights during the summer, and cold nights during the

winter. Over the year, the temperature varies between 6 ◦C and 25 ◦C, and it’s rarely below

3 ◦C and above 30 ◦C. The warm, dry season goes from March to May, followed by a rainy

season from June to September, and a cool, dry season from October to February. Mountains

and volcanoes shield the city on three sides so winds are weak inside the valley; while the

predominant wind direction varies throughout the year, the wind blows most often from the

south.

Crime Mexico City was one of the first cities in Latin America to publish geolocated crime

data. The crime records include reported and red-handed crimes, latitude, longitude, and

sometimes the sex and age of the victims. Crime rates are high in Mexico City, although

they are relatively low compared to other regions of the country. During 2017, 2018, and

2019 general crime rates were 2,342, 2,618, and 2,486 per 100,000 residents, respectively.

According to the National Urban Security Survey of 2019, 62.1% of people reported feeling
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unsafe in their neighborhood. The most common crimes in the city are robbery, carjacking,

kidnapping, and homicide.

3 Conceptual framework

Adaptation responses and the role of potential non-linearities If there are non-

linearities in the crime-pollution relationship, looking only at cities with moderate concentra-

tions may not help us to identify how pollution might affect crime—and related behavior

—when pollution levels are very high. In particular, assuming a monotonic relationship

between ambient pollution and crime, especially at high levels of air pollution, could bias

the results if there is an inflection point after which marginal increases in pollution are more

or less damaging. Thus, making it more likely to either overestimate or underestimate the

effects of air pollution on crime.

In that regard, Arceo et al. (2016) argue that external validity of the estimated

effects of air pollution may be limited if data from areas with low pollution levels is used to

extrapolate the impact of air pollution to high pollution environments. For example, consider

the setting where the effects of air pollution become less damaging when concentrations

reach a cripplingly high level rarely reached in a cleaner city. Using estimates from places

like London, Chicago, and other US cities (Burkhardt et al., 2019; Bondy et al., 2020;

Herrnstadt et al., 2021) would give an incomplete view of the pollution-crime relationship in

the proposed setting. In particular, extrapolating the estimates from those cities to many of

the developing world’s megacities that regularly exceed WHO limits by wide margins may

lead us to overestimate the effects of air pollution on crime.

Air pollution’s effects on crime may also be highly dependent on people’s behavior, how

easy it is to know when pollution is dangerous, and how costly it is to engage in adaptation

strategies to reduce exposure. For example, staying indoors or investing in facemasks or air

purifiers. This is especially important when studying the potential effects of environmental

regulation to reduce air pollution, where the interaction between pollution exposures and

income may be heterogeneous. For example, people are generally more likely to engage in

defensive investments when exposed to high pollution levels (Ito & Zhang, 2020), especially
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when exposure is common. Thus, the effects of reducing air pollution could be lower with

active adaptations in place. However, if investments are costlier, as is usually the case in

the developing world (Arceo et al., 2016), adaptation responses may be limited, at least for

poorer individuals. Hence, the effects of reducing air pollution could be larger in this setting.

In the first part of the empirical strategy, and based on this framework, I provide

evidence of the nonlinearities in the relationship between air pollution and crime in Mexico

City. In particular, I show an inflection point after which marginal increases in air pollution

reduce crime. Then, in the second part, I explore the mechanism and argue that air pollution

has the power to shape human behavior. First, I use expressed sentiment in social media

posts and show that air pollution correlates to negative sentiment. Second, I use mobility

measures to argue that adaption responses are in place, especially when high levels of air

pollution are reached. Finally, I show that adaptation responses are heterogeneous, and

wealthier neighborhoods are those engaging in them.

4 Data

I combined multiple administrative data sources on crime records, air pollution, weather,

environmental alerts, and metro journeys with scraped data on social media posts from

January 2017 to March 2020.

Crime The Attorney General’s Office in Mexico City (Fiscalia General de Justicia) main-

tains a crime database that contains incident-level reported and red-handed crimes by

type, including date, time, latitude, and longitude at which crimes occurred. I collapse

incidence-level data into the neighborhood-day level, assigning crimes to each of the 1728

neighborhoods in the city.1

Weather and Air Pollution Daily monitor-level weather data is obtained from the

Atmospheric Monitoring System (SIMAT)’s data portal. This agency uses 28 ground-based

monitoring stations to measure hourly average temperature, relative humidity, wind speed,

and wind direction. SIMAT also measures concentrations of primary air pollutants, including
1Appendix Figure A.2 maps the administrative divisions and topography of Mexico City.
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PM2.5, PM10, Ozone, CO, NO2, and SO2 from 34 monitoring stations2 across the city,

and maintains historical records of the environmental alerts that have been issued due to

air pollution. I aggregate monitor readings to the daily level by averaging across hourly

observations.

Rainfall data is obtained from satellite-based readings from NASA’s GPM IMERG

Level 3 data, which provides daily measures with a spatial resolution of 0.1◦×0.1◦.

My main pollution measure comes from the city’s Air Quality Index (AQI) computed

following the Mexican environmental standard NADF-009-AIRE-2017.3 This index is a

composite pollution metric based on the six primary air pollutants that run from 0 to 500.

The higher the value, the greater the level of air pollution and associated health concerns.

An AQI value of 50 units indicates a low risk to human health, while for values above 100,

air quality is unhealthy.

I assign daily pollution and weather readings to neighborhoods using the inverse

distance weighted average of the five closest monitoring stations to each neighborhood’s

centroid.4

Social Media I scrape and gather unstructured text data from 4,127,254 geotagged Twitter

updates5 posted within Mexico City’s boundaries from January 2017 to March 2020. This

dataset includes the date, time, geographic coordinates, username, and text in the tweet.

To transform the sample of tweets into data for my analysis, I use Natural Language

Processing (NLP) algorithms designed to extract and quantify sentiment from text data.

I use pysentimiento (Pérez et al., 2021), a Python toolkit for sentiment analysis and text

classification specializing in Spanish. This toolkit uses models that can learn context and

meaning from text by emulating the order of words in a sentence and tracking relationships
2These ground-based stations use equipment that meets the U.S. Environmental Protection Agency (EPA)

requirements of Reference and Equivalent Methods (FRMs). These methods are considered the "gold standard"
for monitoring air pollution and were created to sample and analyze air pollutants’ ambient concentrations
and guarantee that those measurements are reproducible. A set of more detailed explanations could be found
in the SIMA’s web portal http://www.aire.cdmx.gob.mx/default.php?opc=%27ZaBhnmI=&dc=%27Yg==

3This standard closely follows the U.S. Environmental Protection Agency (EPA) standard for the Air
Quality Index.

4I test for an alternative number of stations, and the qualitative results are robust to that. The results
can be found in Section 7.2

5Geotagged tweets refer to posts from users that provided consent to turn on the geolocation tags.
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in sequential data. In particular, pysentimiento uses as a base model BETO,6 a language

model trained with 3 billion words fed by all the data from Wikipedia, TED talks, United

Nations, Subtitles, and News Stories, among other sources in Spanish.

I use additional functions in pysentimiento to pre-process the piece of text in each

tweet by converting emojis into descriptive words, normalizing laughs, and removing URLs,

hashtags, punctuation, user handles, and repeated words up to three occurrences (see Table

A.6). Then, from a piece of text (tweet), pysentimiento produces a vector of sentiment

scores with the probability that the sentiment expressed is negative, neutral, or positive. My

outcome of interest from this vector of sentiment scores is the number of tweets expressing

negative sentiment.

I assign tweets and sentiment to neighborhoods using tweets’ GIS coordinates and

then aggregate the data at the neighborhood-day level. Appendix Figures A.5 and A.7 show

the spatial distribution of the total tweet volume and the empirical distribution of negative

sentiment. These figures suggest significant geographical variation in tweet volume across

neighborhoods and a wide range of negative sentiment in my data. Furthermore, Appendix

Figure A.8 illustrates that the behavior of negative sentiment over time seems to be accurate

compared to the political and economic atmosphere in the city.

I use two mobility measures to investigate whether air pollution could alter people’s

movement patterns. The first variable is a proxy for mobility using each tweet’s GIS

coordinates and posting time as input. For each user, I select those tweets posted after 7

pm and before 8 am and define the average of the coordinates (latitude and longitude) of

this sub-sample of tweets as each user’s "home" location. Then, I construct a "tweeting

from home" variable to classify tweets 1km or less from the identified user’s "home" location.

This "tweeting from home" variable captures those tweets posted from each user’s home

and, thus, indoor behaviors. The second mobility measure is the daily metro ridership in

Mexico City. This measure comes from administrative data shared by the city’s mobility

authority, Secretaria de Movilidad (SEMOVI), and includes the number of daily passengers
6The base model is BETO, a BERT-based language model pre-trained using only Spanish data. BERT

stands for Bidirectional Encoder Representations from Transformers, and it’s a machine-learning model
for natural language processing tasks such as sentiment analysis, text prediction, text generation, and
summarization.
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per metro station. I assign each metro station to a neighborhood based on location and then

sum over all metro stations inside each neighborhood to get the total number of riders at

the neighborhood-day level. The daily ridership works as a proxy of outdoor behavior in

each neighborhood.

Table A.1 presents summary statistics at the neighborhood-day level. The original

sample includes 2,207,933 observations of daily crimes across 1728 neighborhoods in Mexico

City.7 There is significant variation in crime and the Air Quality Index across neighborhoods

and over time. During a given day, crime numbers range from 0 to 150 while the average

number of crimes per neighborhood is 0.35. The AQI spans from 1.7 to 208 units, with a

mean of 90.5.

5 Stylized facts

To motivate the main features of the empirical strategy in the following section, I start by

documenting three stylized facts from the data. The first reveals that air pollution is seasonal

and correlated with weather variables. The second illustrates the high spatial variation in

criminal activities and its correlation with weather variables. Finally, the third shows that

expressed sentiment and outdoor activity are correlated with air pollution, yet in opposite

directions.

5.1 Air pollution is seasonal and often exceeds health-risk limits

Figure 1 shows a box plot for the air quality index’s mean, interquartile range, and upper

and lower adjacent values for every month in the sample period. It illustrates that the Air

Quality Index (AQI) is consistently above what is considered safe for human health (dashed

line at 50) as recommended by local authorities. In particular, the mean AQI was 90.56

during this period. Moreover, in 959 out of 1170 days in my sample, the readings from

monitoring stations across the city reached values above 100 points (solid line), which is

considered high risk for human health.
7Depending on the availability of controls and singletons in the panel data, observations might vary across

specifications.
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Figure 1: Air pollution is seasonal and often exceeds health-risk limits

Notes : This figure presents a box plot for the Air Quality Index (AQI) from January 2017 to March
2020. It reports the mean, interquartile range, upper and lower adjacent values computed from
each month within the sample. The dashed line at 50 corresponds to the safe AQI limit for human
health. The solid line at 100 represents the AQI limit considered high risk for human health. The
dashed line at 150 corresponds to extremely high risk for human health.

Despite the fact that air pollution is a year-round concern in Mexico City, Figure

1 illustrates that pollution is highly seasonal. The peak season coincides with the dry

season between October and May, while the lower season coincides with the rainy season

between June and September. Thus, it is essential to consider these seasonalities and weather

conditions and control for them in the empirical strategy.

5.2 Crime is geographically dispersed and related to weather conditions

Panel A in Figure 2 shows that Cauchtemoc, Benito Juarez, Miguel Hidalgo, and Venustiano

Carranza are the boroughs that routinely show the highest number of crimes per 100,000

residents during the period of analysis. Yet, Panel B shows that crime in Mexico City

is still geographically dispersed. These results highlight the importance of accounting for
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location-specific and time-invarying characteristics that could drive crime at the neighborhood

level.

Figure 2: Crime in Mexico city is geographically dispersed

Panel A: Crime Rate per Borough Panel B: # Crimes per Neighborhood
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Notes: Panel A uses data from Attorney General’s Office in Mexico City aggregated at the borough level.
The panel shows the number of crimes per 100,000 residents by borough and year in Mexico City. It includes
16 boroughs and data from January 2017 to December 2019. Panel B uses the same data source but plots
the total number of crimes per neighborhood during the analysis period. It includes 1729 neighborhoods
from January 2017 to March 2020.

There are also time-varying characteristics that could affect crime. In particular,

literature has shown that weather variables could also be related to criminal behavior (Cane

et al., 2014; Burke et al., 2015; Cohena & Gonzalez, 2018). Appendix Figure A.4 shows this

is also the case in my data. Using bi-variate regressions, I find that the number of crimes is

positively correlated with temperature and rainfall and negatively correlated with humidity

in this setting. Therefore, it is crucial to flexibly control for weather characteristics in the

baseline specifications of my empirical strategy to rule out the possibility that weather is

responsible for my results.

5.3 Social media sentiment and mobility are related to air pollution

This paper uses social media data to measure expressed sentiment as a proxy of emotional

state and to identify users’ "home location" as a tool to describe mobility patterns. Figure 3

plots the relationship between posts from Twitter and the Air Quality Index—aggregated at

the neighborhood-day level.
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Figure 3 illustrates that two opposing forces exist when high pollution levels are

reached. On one side, Panel A depicts the negative-over-positive sentiment ratio measured

in my sample data in a binned scatter plot against air pollution. The negative-over-positive

sentiment ratio is computed as the number of tweets expressing negative sentiment over

positive ones. As illustrated in Panel A, there is a positive correlation between air pollution

and the negative-over-positive sentiment ratio, suggesting that expressed sentiment is more

negative on days with poor air quality.

On the other side, Panel B plots a binned scatter plot of the AQI and the outdoor-

over-indoor ratio, defined as the share of tweets posted outside the identified users’ "home

location." The relationship illustrated in Panel B presents a negative correlation between air

pollution and the outdoor-over-indoor ratio, thus, suggesting that poor air quality reduces

outdoor activity.

Figure 3: Two opposite forces interact when high pollution levels are reached

Panel A: Negative Sentiment Panel B: Outdoor Activity
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Notes: Data at the neighborhood-day level. Panel A plots a binned scatter plot of the Air Quality Index
AQI and the negative over positive sentiment ratio from my social media sample. Negative (positive)
sentiment refers to the number of tweets scored as expressing negative (positive) sentiment after applying
NLP algorithms. Panel B plots a binned scatter plot of the AQI and outdoor over indoor ratio. Indoor
(outdoor) refers to the number of tweets posted within (outside) each user’s "home location".

6 Empirical strategy

6.1 Estimating the non-linear relationship between air pollution and crime

To estimate the non-linear effect of air pollution on criminal activity, it is essential to rule out

potential confounding factors influencing this relationship. For example, economic activity
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and population density could determine both the intensity of crime and the presence of air

pollution in a given area. Moreover, as motivated by the previous section, weather conditions

and geographical characteristics could determine the spatial dispersion of particulate matter

and the concentration of crime. I use two complementary identification strategies and a

non-parametric specification to estimate this relationship and to overcome this empirical

challenge. I explain all three in detail below.

Multidimensional Fixed Effects model I start by accounting for neighborhood-specific

and time-invariant characteristics, as well as common shocks to all neighborhoods, by

estimating the following econometric specification,

Crimesi,t = µi + δt + β1 · Pollutioni,t + β2 · Pollution2
i,t +X ′

i,tΛ+ ϵi,t(1)

where Crimesi,t is the total number of crimes in neighborhood i on day t and Pollutioni,t

represents a three-day mean value of the Air Quality Index (AQI) based on day t and the

previous two days. This aggregation considers that accumulated exposure to air pollution

may play a differential role in cities that generally experience pollution levels that exceed

regulatory standards year-round, like Mexico City. The parameters of interest are β1 and β2,

which respectively capture the linear and nonlinear components of the relationship of interest.

I include the quadratic term to investigate if there is a peak point in the pollution-crime

relationship.8

There is well-established evidence that weather conditions affect both pollution

(Zannetti, 1990; Deryugina et al., 2019) and crime (Burke et al., 2015; Cohena & Gonzalez,

2018). I follow Deryugina et al. (2019) and control for a flexible function of temperature and

weather variables. First, I generate indicators for daily maximum and minimum temperatures.

The daily maximum includes seven bins, ranging from 5 degrees Celsius to 33 degrees Celsius,

with each bin spanning 3 degrees Celsius, while the daily minimum includes six bins, ranging

from -5 to 20 degrees Celsius. Second, I classify the daily relative humidity and precipitation

in deciles and generate indicators for each of them. And third, I generate a vector X that
8Since the potential non-linearity may be mechanically imposed on the data by including the quadratic

terms, I perform a non-parametric estimation of this relationship and study the effect of increasing one
additional unit of air pollution on crime. Section 7 present the details and results of this estimation.
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includes all the possible interactions between those weather variables. To ensure that β1 is

not capturing the effect of weather conditions over the previous two days, I also include two

lags of the weather interactions.

Time and neighborhood fixed effects are represented by δt and µi, respectively.

Including neighborhood fixed effects in the specification removes any potential time-invariant

confounders and controls for geographic differences in crime and pollution. This will allow

me to compare crime levels between days with high and low pollution levels within the same

neighborhood. I also include day-of-the-week and month-by-year fixed effects to control any

within-week and seasonal pollution and crime variation, respectively. ϵit is the idiosyncratic

error term; I cluster standard errors at the neighborhood level to account for potential time

dependency. Finally, given that crime is a count variable, I use a Poisson pseudo-maximum

likelihood (PPM) estimation with multiple high-dimensional fixed effects Correia et al. (2020),

that takes into account the censored nature of the dependent variable without requiring that

the conditional variance must be equal to the conditional mean.9

Instrumental variable approach I recognize that air pollution is not randomly generated

and will likely be measured with some error. Thus, the previous specification may not

completely eliminate endogeneity concerns given by omitted factors that vary with time on

the level of individual neighborhoods. For example, economic activity may cause changes in

air pollution and also in criminal activity. In this case, β1 and β2 would be subject to bias in

favor of the direct role of pollution in causing crime. Thus, I instrument air pollution with

wind speed and wind direction to address these endogeneity concerns. More specifically, I

estimate the following 2SLS specification:

Crimesi,t = µi + δt + βIV
1 · ̂Pollutioni,t + βIV

2 · ̂Pollution2
i,t +X ′

i,tΛ+ ei,t(2)

Pollutioni,t = ηi + ϕt +Φ
(
WindSpeedi,t ;WindDirection

i,t

)
+X ′

i,tΓ+ ϵi,t(3)

where Crimesit is again the total number of crimes in neighborhood i on day t, ̂Pollutionit

is the corresponding prediction from the first stage (Equation 3), and Φ is a parametric but
9I also estimate Equation 1 using OLS and a simple logarithmic transformation of the number of crimes

plus one. I find qualitatively similar results which I report in the Appendix.
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flexible function of wind that considers both the effect of wind speed and wind direction as

well as their interaction on air pollution. To do so, I aggregate hourly monitor readings of

wind speed and wind direction to the daily level averaging across hourly measurements. I

include the same set of weather controls and fixed effects explained in detail in Section 6.1.

The model specification described in Equations 2 and 3 is motivated by previous

results in the literature as well as by the data. Figure 4 illustrates how wind direction and

speed strongly predict air pollution levels across neighborhoods over time. Panel A presents

a correlation statistic plot for the average Air Quality Index binned by the dominant wind

direction and wind speed over the entire period. As can also be corroborated in Panel B,

wind speed is negatively correlated with the average air quality since high wind speeds

help to dissipate air pollution. Similarly, this relationship varies in intensity depending on

the quadrant of the dominant wind direction. Panel C shows that the average pollution

levels directly depend on the predominant direction of wind across eight potential direction

vectors.10 For example, Panel C shows that air pollution is higher when the wind is blowing

from the east, most likely because pollution concentrates in the mountainous formation in

the southwest of the city.11

To capture the potential complementarity between wind direction and wind speed, I

specify further that

(4) Φ
(
WindSpeedi,t ,WindDirection

i,t

)
=

∑
q∈Q

δq ·
(
WindSpeedi,t × 1

{
WindDirection

i,t = q
})

,

where Q represents the set of potential quadrants Q = {NW,NE, SW, SE} and 1(·) is an

indicator function.

The key identifying assumption when using wind as an instrument for air pollution is

that, after controlling for weather variables and a rich array of fixed effects, the interaction

between wind speed and wind direction only affects crime through its influence on air

pollution.

One concern about using wind speed as part of the instrument is that wind speed
10The eight vectors are: north (N), south (S), west (W), east (E), northeast (NE), southeast (NW),

southwest (SW), and northwest (NW)
11Figure A.2 shows the topographic terrain of Mexico City. Mountains surround the city in the southwest

region, trapping the air when the wind blows from the North and the East.
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might directly affect the number of people on the streets and, consequently, the supply of

victims of crime. Thus, the exclusion restriction would be violated if wind speed affected

behavior. However, data suggest Mexico City usually experiences mild weather and wind

speeds all year round, unlike marked seasons of high-speed winds typical in northern latitudes.

In fact, the median wind speed during the whole period of the analysis is 2.1 m/s (∼ 4

Figure 4: Wind speed, wind direction, and the concentration of air pollution

Panel A: AQI index across all wind speed and dominant wind direction combinations
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knots), which under the Beaufort Wind Scale12 is considered as light breeze with no major

impact on the land. Furthermore, Figure A.9 shows that there were very few days per year

when the mean wind speed reached values above 3 m/s (∼ 6 knots), which in any case is

still considered as a light breeze under the Beaufort Scale.

Computing a dose-response function Another critical concern with the main specifica-

tion is that the non-linearity may be mechanically imposed on the data by simply including

the quadratic term and potentially resulting from over-fitting the data. To rule out this

possibility, I perform a non-parametric estimation13 of this relationship using a restricted

cubic spline and by studying the effect of increasing one additional unit of air pollution on

crime at different levels of air pollution.

7 Results

7.1 Inverted U-shape relationship between air pollution and crime

Table 1 presents the results of estimating Equation 1. Columns 1 and 2 show the estimated

coefficients without including fixed effects. These results suggest that an additional ten units

in the three-day average of the Air Quality Index (AQI) are associated with an increase

in crime by 5.48% and 6.87%, respectively. However, this change doesn’t occur linearly,

as illustrated by the significant squared term. Column 2 flexibly controls for temperature

and other weather variables, plus their respective lags, to ensure that the non-linearity is

not driven by daily temperature (Burke et al., 2015). Columns 3-7 display the results after

including various sets of fixed effects explained in detail in section 6.1. Column 4 shows that

an additional ten units in the AQI’s mean average leads to an increase of 1.04% in crime

after including neighborhood fixed effects. My preferred specification includes a full set of

fixed effects and is depicted in column 5. This column shows that an increase of ten units in

the air quality index AQI leads to a 1.1% increase in the number of crimes.14

12The Beaufort Wind Scale classifies wind speeds and its effects at different levels. The scale starts with 0
and goes to a force of 12.

13Figure 6 shows the result of this estimation.
14Notice, however that the total effect of increasing 10 units in the AQI once we account for the non-linear

effect (i.e., ∂Crimesi,t
∂AQIi,t

= β1

10 + 2
100 · β2 ·AQI) is actually 0.0206% when evaluate it at the mean.
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I also add quarter-by-year and semester-by-year fixed effects in columns (6) and (7),

respectively, to control for any seasonal variation at these levels. Since the significance and

magnitude of my coefficients remain stable in columns (6) and (7), I conclude that my results

are robust to such seasonality.

Table 1: Air pollution’s impact on crime: PPML estimation

Dependent Variable: Number of Crimes

(1) (2) (3) (4) (5) (6) (7)

AQI (10 Units) 0.0548*** 0.0687*** 0.0059** 0.0104*** 0.0111*** 0.0082*** 0.0060**
(0.0079) (0.0113) (0.0026) (0.0026) (0.0027) (0.0026) (0.0026)

AQI2 -0.0012*** -0.0011*** -0.0002* -0.0004*** -0.0005*** -0.0004*** -0.0003***
(0.0003) (0.0004) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Weather controls Yes Yes Yes Yes Yes Yes
Weather controls Lags Yes Yes Yes Yes Yes Yes
Neighborhood FE Yes Yes Yes Yes Yes
Day of the week FE Yes Yes Yes Yes
Month×Year FE Yes
Quarter×Year FE Yes
Semester×Year FE Yes

Neighborhoods 1,728 1,728 1,728 1,728 1,728 1,728 1,728
Observations 2,038,491 2,033,644 2,032,467 2,032,467 2,032,467 2,032,467 2,032,467

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of 2020. The dependent variable
is number of crimes per day and neighborhood. The model is estimated using a Poisson pseudo maximum likelihood (PPML)
specification. The Air Quality Index (AQI) is based on air pollution readings from the five closest monitoring stations (weighted
by inverse squared distance). I include flexible weather controls and two lags of these. Please see Section 6.1 for details on these
controls. Standard errors are clustered at the neighborhood level. *** p<0.01, ** p<0.05, * p<0.1

In Figure 5, I report the associated marginal effects plot of the most demanding

specification Column 5 in Table 1. It illustrates the conditional marginal effects of increasing

the air quality index by one unit at different levels of the AQI, i.e., ∂E[Crimesi,t|Xi,t]

∂AQIi,t
(·).

For example, when AQI is between 0 and 100, adding one unit of AQI increases crime.

However, the marginal effect becomes indistinguishable from zero when the AQI reaches

levels indicated as dangerous to human health, i.e., 100 and 150 units, and negative when is

extremely dangerous, that is, an AQI greater than 150 units.

Finally, Figure 6 illustrates the dose-response function calculated by using a restricted

cubic spline of air pollution measures with knots at the 5th, 25th, 50th, 75th, and 95th

percentiles. This curve shows that the effect of the Air Quality Index on crimes, relative to

having 0 units in the index, is increasing through ∼120 units. However, after 120 units are
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reached, the effect is sharply decreasing - i.e., the marginal effect is negative. This result

supports the hypothesis that, after accounting for high levels of air pollution, crime could

actually display a non-monotonic relationship with air pollution.

Figure 5: Marginal effect of increasing one unit of AQI on Crime
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Notes: The figure displays the marginal effect ∂E[Crimesi,t|Xi,t]
∂AQIi,t

(·) and 95% confidence intervals of
increasing one unit of the AQI on Crime for different levels of the AQI.

Next, given that air pollution might not be randomly generated, I implement an

instrumented variable strategy to rule out any remaining time-varying confounders that

could affect both air pollution and crime. Table 2 reports my main IV strategy estimates,

where I use the interaction of wind speed and wind direction as an exogenous shock to

air pollution.15 The first stage estimate, in Column 1, shows that my instrument strongly

predicts air pollution. The IV estimate, in Column 3, implies that 10 additional units in the

AQI at the mean cause an increase in crime of 0.0216%.16 which is only 5.37% bigger than

the OLS effect of 0.0205%.17

15To address concerns about the violation of the exclusion restriction when using wind speed as part of my
instrument, I add wind speed as a covariate to estimate Equation 1 and I found that after controlling for air
pollution, wind speed doesn’t have a direct effect on the number of crimes. See Table A.2 in the Appendix.

16Based on Column 3 in the Table 2 and taking into account that the mean AQI is 90.5, this value is
computed as ∂Crimesi,t

∂AQIi,t
= β1

10 + 2
100 · β2 ·AQI = (0.0818)

10 + 2
100 · (−0.0044) · 90.5 = 0.0216%

17Based on Column 5 in the Table 1 and taking into account that the mean AQI is 90.5, this value is
computed as ∂Crimesi,t

∂AQIi,t
= β1

10 + 2
100 · β2 ·AQI = (0.0111)

10 + 2
100 · (−0.0005) · 90.5 = 0.0205%
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Figure 6: AQI dose-response function for crimes relative to AQI equal to zero.

1
1.

02
1.

04
1.

06
R

el
at

iv
e 

R
at

e 
of

 C
ri

m
e

0 17.6 35.2 52.8 70.4 88 105.6 123.2 140.8 158.4 176

Air Quality Index

Notes: This figure represents a dose-response curve between air pollution and crime. It corresponds to a
cubic spline with knots at the 25th, 50th, 75th, and 95th percentiles.

7.2 Key robustness tests

Allowing for differential time trends Column 1 in Table A.3 reports the results when

I include borough-specific time trends. By including these trends, I control for invariant

differences between high and low-crime boroughs and for changes in aggregate time trends in

crime and pollution across days. My results are robust to including these trends.

Environmental Alerts As recently shown by (Aguilar-Gómez, 2020), considering the

role of environmental alert days is important because those can directly improve air quality

through a mitigation strategy pushed by the government rather than by individuals. Column

2 in Table A.3 shows that my results are robust to account for the presence of environmental

alerts.

Time-specific shocks: Holidays During holidays, people are more likely to change their

sleeping habits, alter their commuting patterns, modify outdoor time, and even travel outside

the city. Therefore, the pollution-crime relationship could look different during those days.
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Table 2: Air pollution’s impact on crime: Instrumental Variable model

Dependent Variable: AQI Number of Crimes
(1) (2) (3)

Model: First Stage Reduced Form IV

Wind speed -2.2987*** -0.0210**
(0.0227) (0.0105)

Wind Speed × Dominant Wind is in Quadrant 2 -0.1180*** 0.0040
(0.0117) (0.0081)

Wind Speed × Dominant Wind is in Quadrant 3 -0.0945** 0.0057
(0.0127) (0.0081)

Wind Speed × Dominant Wind is in Quadrant 4 -0.1454*** 0.0086
(0.0135) (0.0087)

AQI (10 units) 0.0818***
(0.0161)

AQI2 -0.0044***
(.0009)

Weather Controls Yes Yes Yes
Lags of Weather controls Yes Yes Yes
Neighborhood FE Yes Yes Yes
Day of the week FE Yes Yes Yes
Month×Year FE Yes Yes Yes

Neighborhoods 1,728 1,728 1,728
Observations 2,034,623 2,032,315 2,032,315
R-squared 0.6399

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of
2020. The Air Quality Index (AQI) is based on air pollution readings from the five closest monitoring
stations (weighted by inverse squared distance). I include flexible function of weather controls, and two
lags of these. Please see Section 6.1 for details on these controls. Standard errors are cluster-robust over
neighborhoods. *** p<0.01, ** p<0.05, * p<0.1

Hence, I include holidays as a control in my baseline specification to remove statistical noise

to by-holiday variation in crime and air pollution. Column 3 in Table A.3 reports that my

results are robust to that inclusion.

Varying the number of monitoring stations used to compute pollution and weather

variables The number of ground-based stations used to assign a daily pollution measure to

each neighborhood may affect the accuracy of my results. Thus, in column 3 in Table A.3, I

show the estimated coefficients are robust to using three monitoring stations instead of five.
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8 Mechanism: The role of behavioral and adaptation responses

Evidence of the underlying mechanisms for the link between air pollution and crime is

essential for designing environmental and crime mitigation policies. I hypothesize that

behavioral responses mediate the relationship between air pollution and crime. To examine

this hypothesis, I look into the effects of different types of crimes to test whether some crimes

are more responsive to air pollution than others. Table 3 reports the estimates of Equation 1

using my preferred specification. The results suggest that violent crimes, including violent

property crimes (robbery), are positively and non-linearly affected by air pollution. As

violent crimes are more likely to be impulsive than general crimes, behavioral responses to

pollution, such as aggression, may play a role.

Table 3: Air pollution affects violent crimes but not others

Property Crime

Dependent Variable Violent Non-Violent Robbery Theft
(1) (2) (3) (4)

AQI (10 units) 0.0226*** 0.0003 0.0281*** -0.0050
(0.0043) (0.0026) (0.0059) (0.0052)

AQI2 -0.0010*** 0.0000 -0.0012*** 0.0001 2
(0.0002) (0.0001) (0.0003) (0.0002)

Weather controls and Lags Yes Yes Yes Yes
Neighborhood FE Yes Yes Yes Yes
Day of the week FE Yes Yes Yes Yes
Month×Year FE Yes Yes Yes Yes

Neighborhoods 1,728 1,728 1,728 1,728
Observations 2,030,875 2,028,236 1,975,640 2,008,969

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of
2020. The model is estimated using a Poisson pseudo maximum likelihood (PPML) specification. The
Air Quality Index (AQI) is based on air pollution readings from the five closest monitoring stations
(weighted by inverse squared distance). I include flexible controls for temperature, precipitation,
relative humidity; and two lags of these weather controls. Please see Section 6.1 for details about these
controls. Standard errors are cluster-robust over neighborhoods. *** p<0.01, ** p<0.05, * p<0.1
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Analyzing people’s behaviors or emotional states after exposure to air pollution may

be useful in understanding the mechanisms that mediate these effects. One way to measure

peoples’ responses to air pollution is by examining their feelings. Ideally, one would survey

individuals daily regarding their emotional/psychological state and then map those responses

to different levels of exposure to air pollution. However, a survey like this will be extremely

expensive to implement. An alternative approach is to examine what people express or

say—as a proxy of emotional state—through publicly available platforms in Mexico City.

This information could be used to infer how people react to poor air quality. I use daily social

media posts and compute their expressed sentiment using Natural Language Processing

(NLP) algorithms. Specifically, I use geolocated posts from Twitter, from January 1st, 2017

to March 24th, 2020, and score their expressed negative sentiment as described in Section 4.

To estimate the relationship between air pollution and daily negative sentiment, I

estimate the following econometric specification:

Negative Sentimenti,t = µi + δt + β1 · Pollutioni,t +X ′
i,tΛ+ ϵi,t,(5)

where Pollutioni,t represents the Air Quality Index (AQI) in neighborhood i on day t, and

Negative Sentimenti,t is the number of tweets expressing negative sentiment. The parameter

of interest is β1 and captures the relationship between air pollution and the expressed negative

sentiment on social media. Given that weather conditions, days of the week, and months are

also potentially correlated with expressed sentiment (Baylis, 2020), I include the same set of

fixed effects and weather controls explained in detail in Section 6.1.

Table 4 summarizes the results and documents a positive correlation between air

pollution and negative expressed sentiment. The coefficients suggest that increasing the

AQI by 10 units is associated with an increase between 0.8% - 1% in the number of tweets

expressing negative sentiment. The positive correlation between air pollution and negative

sentiment, along with the impact of air pollution on violent crime, support the hypothesis

that air pollution could induce behavioral responses and positively affect crime through the

behavioral channel.

I also analyze whether people engage in avoidance behaviors to reduce their exposure
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Table 4: Pollution and expressed negative sentiment

Dependent Variable: Tweets Expressing Negative Sentiment

(1) (2) (3) (4) (5) (6)
Mean of Dep. Var. 1.9649 1.9654 1.9673 1.9649 1.9654 1.9673

AQI One-Day 0.0448*** 0.0587*** 0.0078**
(0.0054) (0.0065) (0.0031)

AQI Three-Days 0.0532*** 0.0855*** 0.0097***
(0.0065) (0.0091) (0.0038)

Weather controls Yes Yes Yes Yes
Neighborhood FE Yes Yes
Date FE Yes Yes

Observations 500,735 500,583 500,077 500,735 499,102 498,598

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of 2020. The
model is estimated using a Poisson pseudo maximum likelihood (PPML) specification. The Air Quality Index
(AQI) is based on air pollution readings from the five closest monitoring stations (weighted by inverse squared
distance). I include flexible controls for temperature, precipitation, relative humidity; and two lags of these
weather controls. Please see Section 6.1 for details about these controls. Standard errors are cluster-robust over
neighborhoods. *** p<0.01, ** p<0.05, * p<0.1

to air pollution, which is crucial in settings with high-pollution levels. Some common

strategies to mitigate exposure to air pollution are investing in air purifiers or face masks

(Ito & Zhang, 2020) and reducing time outdoors. In this paper, I explore the latter by using

two proxies of how mobile people are on a given day and neighborhood: (1) the number of

tweets from home and (2) the number of metro journeys. Table 5 shows that increasing the

AQI by 10 units is associated with an increase between 1.1% and 1.3% in the number of

tweets from home, suggesting that poor air quality may increase time indoors. To support

this hypothesis, Table 6 illustrates a negative correlation between air quality and metro

ridership; increasing 10 units in the AQI is associated with a decrease between 3.2% and

3.9% in the number of metro journeys. Thus, pointing to reductions in outdoor time amid

poor air quality.

Adaptation strategies may be more challenging to implement for some groups than

others. For example, air purifiers and facemasks could be expensive and not readily available in

some areas, especially before COVID-19, imposing a financial burden on poorer communities

with lower WTP for clean air. Similarly, wealthier households may be more likely to limit
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Table 5: Mobility Analysis I: Pollution and Tweets from Home

Dependent Variable: Tweets From Home

(1) (2) (3) (4) (5) (6)
Mean of Dep. Var. 0.9195 0.9208 0.9300 0.9195 0.9208 0.9300

AQI One-Day 0.0634*** 0.0855*** 0.0103**
(0.0069) (0.0095) (0.0042)

AQI Three-Days 0.0737*** 0.1205*** 0.0130***
(0.0080) (0.0120) (0.0056)

Weather controls Yes Yes Yes Yes
Neighborhood FE Yes Yes
Date FE Yes Yes

Observations 500,735 500,005 495,045 500,735 497,552 491,516

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of 2020.
The model is estimated using a Poisson pseudo maximum likelihood (PPML) specification. The Air Quality
Index (AQI) is based on air pollution readings from the five closest monitoring stations (weighted by inverse
squared distance). I include flexible controls for temperature, precipitation, relative humidity; and two
lags of these weather controls. Please see Section 6.1 for details about these controls. Standard errors are
cluster-robust over neighborhoods. *** p<0.01, ** p<0.05, * p<0.1

Table 6: Mobility Analysis II: Pollution and Metro Journeys

Dependent Variable: Number of Metro Journeys per Day

(1) (2) (3) (4) (5) (6)
Mean of Dep. Var. 23,871.70 23,870.70 24,032.89 23,871.7 24,918.14 24,032.89

AQI One-Day -0.0078** -0.0085* -0.0319**
(0.0032) (0.0045) (0.0137)

AQI Three-Days -0.0099** -0.0120** -0.0386**
(0.0039) (0.0054) (0.0164)

Weather controls Yes Yes Yes Yes
Date FE Yes Yes

Observations 166,040 165,958 164,838 166,040 165,958 164,838

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of 2020
for those neighborhoods with at least one metro station. The model is estimated using a Poisson pseudo
maximum likelihood (PPML) specification. The Air Quality Index (AQI) is based on air pollution readings
from the five closest monitoring stations (weighted by inverse squared distance). I include flexible controls
for temperature, precipitation, relative humidity; and two lags of these weather controls. Please see Section
6.1 for details about these controls. Standard errors are cluster-robust over neighborhoods. *** p<0.01, **
p<0.05, * p<0.1
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their time outdoors when pollution is high since they are more likely to have jobs that can

be performed indoors (Hatayama et al., 2020). Thus, the responses to air pollution may

differ across socioeconomic groups, potentially affecting adaptation responses.

I examine whether the relationship between air pollution and violent crimes differs

across neighborhoods’ socioeconomic groups—which I measure using the degree of marginal-

ization as computed by Mexico City’s government. The degree of marginalization classifies

neighborhoods into five categories considering—besides income—variables such as access to

public goods and sanitation infrastructure, poverty, urban decay, housing quality, and urban

safety.

Figure 7: The relationship of air pollution and crime by degree of marginalization
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Notes : These figures show the relationship between air pollution and crime by the Degree of Marginal-
ization. The Degree of Marginalization classifies neighborhoods into five categories. Category five
means a neighborhood is highly marginalized, and category one means that it is low marginalized.
High Marginalization includes category 5; Medium Marginalization combines categories 3 and 4; and
Low Marginalization combines categories 1 and 2.

Figure 7 reveals that the degree of marginalization shapes the responses to air

pollution. For example, being in low marginalized neighborhoods—and, therefore, with

high socioeconomic status—renders the relationship between air pollution and crime non-
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monotonic with a peak point around 120 units in the AQI. This result suggests that potential

adaptation responses may be in place in more affluent neighborhoods. In contrast, being in

a highly marginalized neighborhood suppose an increasing response of crime to air pollution,

even when the concentrations are cripplingly high. Figure 7 also illustrates that although

the number of violent crimes is higher in more marginalized neighborhoods, the levels of air

pollution do not differ much across levels of marginalization.

9 Conclusion

This paper provides the first systematic empirical evidence of non-linearities in the relationship

between air pollution and crime and, more importantly, the mechanisms that mediate this

relationship.

My results reveal an inflection point after which marginal changes in air pollution

negatively affect crime. I argue that these non-linearities result from two opposite forces

interacting when high pollution levels are reached. On one side, violent crimes are more

responsive to air pollution than other crimes, which supports the idea that air pollution

might lead to behavioral responses such as aggressiveness and self-control issues. Besides, my

results on social media’s expressed sentiment reinforce the behavioral explanation implying

that poor air quality may lead to lower individuals’ emotional state. On the other side, people

seem to engage in adaptation strategies to mitigate the effects of air pollution, especially

when high pollution levels are reached. In particular, individuals seem to alter their mobility

patterns and stay indoors, which would reduce the number of individuals on the streets and,

therefore, negatively affect crime.

These results are consistent across multiple identification strategies that rely on 1)

highly dimensional fixed-effect models, 2) the non-parametric estimation of a dose-response

function, and 3) an instrumental variable approach that employs wind speed and wind

direction as instruments for air pollution. Moreover, those are robust to the inclusion of

borough-specific time trends and to the presence of holidays and environmental alerts.

My findings provide important insights for developing countries where pollution and

crime are usually high.
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First, replication in diverse contexts is critical for external validity. By studying the

pollution-crime relationship in a city with pollution levels more typical of many mega-cities

in the developing world, I show that defensive behaviors can vary markedly depending

on the intensity of pollution concentrations. Hence, extrapolating results from cities in

industrialized countries may render those estimates non-externally valid in high-polluted

settings like Mexico City.

Second, more research is needed to identify and quantify the potential behavioral

responses to air pollution. For example, my results about changes in individuals’ emotional

states reveal that there are less noticeable impacts of air pollution that may affect well-being

and are not currently considered in the design of pollution mitigation policies. Conversely,

avoidance behaviors may be costlier to implement by certain groups. Yet, we still haven’t

determined the causes of those differential costs.

Finally, given that only wealthier places in Mexico City seem to engage in adaptation

strategies, air pollution exposure is likely to be heterogeneous. This unequal take-up

of remediation behaviors against poor air quality raises significant environmental justice

concerns and invites policymakers to consider them in implementing environmental and

crime mitigation policies. Although the optimal design of environmental policies to reduce

air pollution in developing countries is out of the scope of this paper is a fruitful avenue for

future research.
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A Appendix for Online Publication

Figure A.1: Geographical distribution of monitoring stations in Mexico City

Notes: This figure presents a map with the neighborhoods (in light gray) and the location of meteorological
stations (in blue) in Mexico City.
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Figure A.2: Topographic Terrain around Mexico City

Notes: This figure presents the map of neighborhoods and the elevation raster for the Mexico City area.
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Figure A.3: Histogram of the Air Quality Index in Mexico City

Notes: This figure presents the empirical distribution of the Air Quality Index in Mexico City during the
sample period from January 2017 to March 2020.
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Figure A.4: Crime is highly correlated with weather variables
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Notes: This figure presents the estimated coefficients and 95% confidence intervals of bi-variate regressions
between the number of crimes and the weather variables listed in the y-axis using data at the day-neighborhood
level.
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Figure A.5: Logarithm of the number of tweets in sample

Notes: The pixel shading represents the Log (base 10) of the count of tweets in my sample aggregated it at
the neighborhood level. Tweets from January 2017 to March 2020.
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Figure A.6: Result of the pre-processing applied on a sample tweet

Original Tweet Processed Tweet P[Positive] P[Neutral] P[Negative] Sentiment

Con la puchunga !"❤ Que 
mejor compañía después del trabajo
 (@ Santa Clara in Mexico City, Dist
rito Federal)  https://t.co/A6ZlXWsq
Xm

Con la puchunga  emoji señal de aprobación co
n la mano tono de piel claro emoji  emoji cara r
adiante con ojos sonrientes emoji  Que mejor co
mpañía después del trabajo (@usuario Santa Cl
ara in Mexico City, Distrito Federal)  url

0.696 0.298 0.006 Positive

BUENOS DIAS!!! . . Excelente sema
na para todos!!!  $ % Hoy tenemos
 muchas cosas que planear!! & Pro
nto tendremos: ●Juntas de fin de cu
rso ●Storytime y conferencia sorpre
sa. ●Cursos de verano "Fun Weeks" 
. . . .…  https://t.co/gLD0hv7n27

BUENOS DIAS!!! . . Excelente semana para tod
os!!!   emoji pulgar hacia arriba tono de piel clar
o medio emoji   emoji girasol emoji  Hoy tenem
os muchas cosas que planear!!  emoji cara sonri
endo con corazones emoji  Pronto tendremos: J
untas de fin de curso Storytime y conferencia s
orpresa. Cursos de verano "Fun Weeks" . . . .  ur
l

0.913 0.086 0.01 Positive

Tardando mas de la cuenta ' (@ Se
cretaria De Economia in Ciudad de 
México, DF)  https://t.co/pI0Z3Wkp
D6

Tardando mas de la cuenta  emoji cara cabread
a emoji  (@usuario Secretaria De Economia in C
iudad de México, DF)  url

0.001 0.003 0.996 Negative

Solo ( (@ Starbucks Lomas Estrella
)  https://t.co/L3sSGM4SoO

Solo  emoji cara decepcionada emoji  (@usuario 
Starbucks Lomas Estrella)  url 0.001 0.021 0.978 Negative

Notes: This figure shows a sample of the original and the processed or cleaned tweets used as input to
perform sentiment analysis. The pre-processing is done using a function of the toolkit pysentimiento. The
function converts emojis into descriptive words, normalizes laughs, and removes URLs, hashtags, punctuation,
user handles, and repeated words up to three occurrences. This figure also shows the vector of sentiment
scores of those tweets and the sentiment assigned to each tweet based on the scores.
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Figure A.7: Distribution of the Daily Share of Tweets with Negative Sentiment

Notes: Data from January 2017 to March 2020. This figure shows the share of daily negative sentiment in the
tweets in my sample. The expressed sentiment is computed using Natural Language Processing algorithms
that interpret and classify emotion with text data.
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Figure A.8: Daily Share of Negative Sentiment

“Culiacanazo”
- Sinaloa’s Shootings

Murder of Fatima, 
a 7-year-old girl

WHO declared COVID-19 as a 
global pandemic

Notes: Daily share of negative sentiment over time in the tweets from my sample. This figure shows that
the peaks of negative sentiment coincide with the important negative events. The expressed sentiment is
computed using Natural Language Processing algorithms that interpret and classify emotion with text data.
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Figure A.9: Average Wind Speed by Category and Month
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Notes: Number of days per month that the average wind speed lies in one of the 6 categories. Wind Speed
in meters per second (m/s).
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Table A.1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
Total Crime 0.349 0.810 0 150 2,207,933
Violent 0.128 0.395 0 20 2,207,933
Non-Violent 0.221 0.637 0 149 2,207,933

Property Crime 0.098 0.353 0 20 2,207,933
Robbery 0.060 0.262 0 20 2,207,933
Theft 0.086 0.336 0 20 2,207,933

Air Quality Index (AQI) 90.508 34.034 1.655 208.335 2,207,933
3 Day Mean AQI 90.548 31.135 3.341 207.27 2,207,933
PM2.5 (µg/m3) 22.486 10.06 1.000 130.867 2,194,172
PM10 (µg/m3) 42.052 18.336 1.000 228.917 2,174,515
Ozone (ppb) 31.71 11.089 1.024 107.899 2,207,933
Carbon Monoxide (ppm) 0.47 0.23 0.015 3.278 2,207,352
Nitrogen Dioxide (ppb) 24.808 8.862 1.421 109.429 2,206,018
Sulfur Dioxide (ppb) 3.828 4.218 0.000 64.782 2,207,801
Wind Speed (m/s) 2.109 0.522 0.501 7.713 2,207,689

Temperature (Celsius) 17.39 2.558 2.415 24.830 2,207,879
Relative Humidity (%) 52.237 13.882 9.125 97.925 2,207,879
Mean Rain (mm) 1.395 2.391 0.000 15.000 2,207,933

Number of tweets 6.808 26.789 1.000 1046.000 500,735
Number of negative tweets 1.965 5.767 0.000 282.000 500,735
Number of neutral tweets 3.515 15.444 0.000 670.000 500,735
Number of positive tweets 1.328 7.015 0.000 348.000 500,735

Notes: Observations are at the neighborhood-day level. Data from January 1st of 2017 to March 31st of
2020.
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Table A.2: Adding Wind Speed as a Control Variable

Dependent Variable: Number of Crimes

(1) (2)
AQI 0.0111*** 0.0112***

(0.0027) (0.0028)
AQI2 -0.0005*** -0.0005***

(0.0001) (0.0001)
Wind Speed 0.0010

(0.0043)

Weather Controls Yes Yes
Lags of Weather controls Yes Yes
Neighborhood FE Yes Yes
Day of the week FE Yes Yes
Month×Year FE Yes Yes

Neighborhoods 1728 1728
Observations 2,032,467 2,032,277

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of 2020.
Standard errors are cluster-robust over neighborhoods. *** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Air Pollution’s Impact on Crime: Robustness

Dependent Variable: Number of Crimes

(1) (2) (3) (4)

AQI 0.0109*** 0.0103*** 0.0096***
(0.0027) (0.0028) (0.0027)

AQI2 -0.0005*** -0.0004*** -0.0004***
(0.0001) (0.0001) (0.0001)

AQI (IDW using 3 stations) 0.0097***
(0.0025)

AQI2 (IDW using 3 stations) -0.0004***
(0.0001)

Boroughs Time Trend Yes
Environmental Alerts Yes
Holidays Yes

Observations 2,032,467 2,032,467 2,032,467 2,031,967

Notes: Regressions are at the neighborhood-day level. Daily data from January of 2017 to March of 2020.
The Air Quality Index (AQI) is based on air pollution readings from the five (three) closest monitoring
stations (weighted by inverse squared distance). I include flexible function of weather controls, and two lags
of these. Standard errors are cluster-robust over neighborhoods. *** p<0.01, ** p<0.05, * p<0.1
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